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Wet chemical method for preparing high purity 3
and a- tricalcium phosphate crystalline powders

M. Fathi, A. El Yacoubi, A. Massit, B. Chafik El Idrissi

Abstract— The object in the present study is to provide a simple route for synthesizing highly pure nano-sized B-tricalcium phosphate (8 ~TCP) and a-
tricalcium phosphate (a —TCP) powders. Apatitic -tricalcium phosphate (ap-TCP) powders were synthesized through wet chemical precipitation method
using a diammonium phosphate solution (NH,4),HPO, and a calcium nitrate tetrahydrate solution Ca(NO3),,4H,0 as precursor materials, with a Ca/P
molar ratio 1.50 from the initial reagents, calcining the powders at 800 and 1200°C to obtain single phase § —TCP and a —TCP respectively. The synthe-
sized powders were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR). The results showed that high purity and

well-crystallized B —TCP and a —TCP powders could be obtained.

Index Terms— B and a -Tricalcium phosphate, FTIR, wet chemical precipitation synthesis, X-ray diffraction.

1 INTRODUCTION

Apeatitic tricalcium phosphate with the chemical formula
of Cas(HPO4)(PO4)s(OH) is a calcium orthophosphate that
transforms into P-tricalcium phosphate Cas(POs): by heating
above 750 °C. TCP is divided into three polymorphs (o, f and
a') according to their thermal stability [1]: the low-temperature
B -TCP, and the high-temperature forms, - and &-TCP. The
last one lacks practical interest because it only exists at tem-
peratures > 1430°C and reverts almost instantaneously to a-
TCP on cooling below the transition temperature. In contrast,
 -TCP is stable at room temperature and transforms recon-
structively [2,3] above 1125°C to a-TCP, which can be retained
during cooling to room temperature [1]. &- and 3 -TCP are
currently used in several clinical applications in dentistry,
maxillo-facial surgery and orthopaedics: 3 -TCP is the compo-
nent of several commercial mono- or biphasic bioceramics and
composites, and a -TCP is the major constituent of the powder
component of various hydraulic bone cements [4,5]. In spite of
having the same chemical composition, & and B-TCP differ
considerably in their structure, density and solubility which,
in turn, determine their biological properties and clinical ap-
plications.

 -TCP is used mainly for preparing biodegradable bioc-
eramics shaped as dense and macro-porous granules and
blocks, whereas the more soluble and reactive a -TCP is used
mainly as a fine powder in the preparation of calcium phos-
phate cements, although some commercial bioceramic gran-
ules and blocks made of a -TCP may be found on the market.
Both 8 and a -TCP materials are used in clinics for bone repair
and remodelling applications.
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o-TCP crystallizes in the monoclinic crystal system and
belongs to the space group P21/a, the 3 -TCP crystallizes in the
rhombohedral space group R3c. Cell parameters (a, b, c, &, 3
and ¥), number of formula units per cell (Z) and cell volume
(V) are displayed in Table 1 for o -TCP and its polymorphs {3 -
TCP and o’ -TCP [6,7]. The structural differences between f -
and o -polymorphs of TCP are responsible for their different
chemical and biological properties, among them, solubility
and biodegradability. The high dissolution rate of  -TCP in
the human biological environment advances bone growth dur-
ing the progressive degradation. This property imparts
significant advantage to § -TCP compared to other biomedical
materials which are not easily resorbed and replaced by natu-
ral bone [8,9]. Therefore, 3 -TCP is frequently used as bone
repairing materials. a -TCP with high solubility has been ap-
plied as a component of bone cements and other bone substi-
tutes [10-12]. a-TCP with the liquid phase forms a very hard
material that can be used for filling bone defects as well as
joining another biomaterial with bone tissue. Moreover, ac-
cording to Eq. (1), a-TCP reacting with water leads to calcium
deficient apatite, which imparts high biocompatibility to the
cement [13].

3Cas3(POs4)2+ H20 — Cas(HPO4)(PO4)s(OH) 1)

The synthesis of pure TCP powders is not so much reported
in the literature compared with that of hydroxyapatite (HA)
Ca10(PO4)s(OH)2. The synthesis of a-TCP is accomplished by
thermal transformation of a precursor with molar ratio Ca/P~
1.5 (calcium-deficient hydroxyapatite, CDHA; amorphous cal-
cium phosphate, ACP; or 3 -TCP) previously obtained [14, 15],
or by solid-state reaction of a mixture of solid precursors at
high temperatures [16, 17]. Self-propagating high-temperature
synthesis [18] and combustion synthesis [19] have also been
employed.

TCP powders are synthesized via wet-chemical method
slightly modified. This method is most commonly used to
form the Ap-TCP. The molar ratio of Ca/P in ApTCP is the
same as that in TCP, and the ApTCP is usually calcined above
700-800°C to transform into 3 -TCP, as described by the fol-
lowing equation (2):
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Cas(HPO4)(PO4)s(OH) — 3Cas(PO4)2+ H20 (2)
Then (3-TCP is reconstructively transforms at 1125°C into a-

TCP.

TABLE 1

STRUCTURAL DATA OF 4 -TCP AND ITS POLYMORPHS.

Property  Ca3(PO,4)(TCP) polymorph
p-TCP a- TCP a’-TCP

Symmetry Rhombohedral Monoclinic Hexagonal
Space R3c P2,/a P6s/mmc
group
a(nm) 1.04352(2) 1.2859(2)  0.53507(8)
b(nm) 1.04352(2) 2.7354(2)  0.53507(8)
c(hm) 3.74029(5) 1.5222(3)  0.7684(1)
a(®) 90 90 90
L) 90 126.35(1) 90
7(°) 120 90 120
z 21 24 1
V(nm®) 3.5272(2) 4.31(6) 0.19052(8)

2 EXPERIMENTAL PROCEDURE

Reaction conditions for the preparation of TCP using wet-
chemical method slightly modified was initially optimized.
Analytical grade calcium nitrate tetrahydrate
[Ca(NOs)2-4H20] and diammonium hydrogen phosphate
[(NH4):HPO4] were dissolved individually in distilled water
preheated to 37°C. The Ca(NOs)2-4H20O solution was added
dropwise into (NHs)2HPO+4 solution under constant stirring to
reach the Ca/P molar ratio of 1.50. The temperature of the
opaque solution is maintained at 37°C. The pH was adjusted
at once by the addition of concentrated ammonium hydroxide
(NH<OH) solution to around 8.5. The milky solution is stirred
for 2h at 37°C. Formed precipitates are then filtered out of the
mother liquor, washed repeatedly with distilled water to re-
move NOs- and NH4*, followed by drying in an air atmos-
phere at 60°C for 24h. The cake obtained after drying was
powdered with agate mortar and pestle, and then calcined
into alumina crucible at 800°C for 2 h. The product was deter-
mined to be pure (3 -TCP. Next, the as prepared § -TCP were
calcined at 1200°C followed by quenching to room tempera-
ture (RT). The calcination is performed as follows: 3 —TCP
powders are heated from RT to 1200°C in 4 hours, soaked at
1200°C for 3 hours, followed by quenching, in the furnace,
from 1200°C to RT in 4 hours.

3 MATERIALS CHARACTERIZATION

Crystalline phases were identified by means of a XPERT-
PROPW 3050/60 (Theta/Theta) X-ray diffractometer (XRD)
using CuKa radiation and operating at 30 kV and 35 mA. XRD
patterns were collected over the 20 range of 5-80° at a step size
of 0.06°. Crystalline phases detected in the patterns were iden-
tified by comparison to the standard patterns from the ICDD-
PDF (International Center for Diffraction Data-Powder Dif-
fraction Files).

The functional groups present in the prepared powder
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were recorded on FTIR spectrophotometer, VERTEX 70, Gene-
sis Series (400-4000 cm!, resolution 4, scans 20). For this 1% of
the powder was mixed and ground with 99% KBr and the
spectrum was taken in the range of 400 to 4000 cm'!.

4 RESULTS AND DISCUSSION

XRD patterns of as-prepared sample dried 24 h at 60°C is
shown if Figure 1. It reveals that the powder exhibited a single
apatitic phase can be indexed as CDHA phase according to
JCPDS N°. 9-432, without a second phase as dicalcium phos-
phate anhydrous CaHPO4 (DCPA, PDF 9-80). When the as-
dried sample is calcined at 800°C (Fig. 2), all the diffraction
peak positions match well with the standard XRD pattern of 3
-TCP (JCPDS NO.9-169). The diffraction peaks are high and
narrow, implying that the (3 -TCP crystallizes well. In addition,
no peaks of impurities are observed in the X-ray diffraction
diagram of the obtained  -TCP. When the  -TCP is calcined
at 1200°C (Fig. 3), all the diffraction peak positions match well
with the standard XRD pattern of a-TCP (JCPDS NO.9-348);
There are no reflections characteristic for the crystalline phases
of other calcium phosphates, such as TCP or hydroxyapatite
Ca1(PO4)s(OH):.
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Fig. 1: XRD patterns of as-prepared sample dried 24 h
at 60°C
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Fig. 2: XRD patterns of as-prepared sample calcined at
800°C (B -TCP)
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Fig. 3: XRD patterns of as-prepared sample calcined at
1200°C (x ~TCP)

The mean crystallite size (D) was calculated from the XRD
line broadening measurement from the Scherrer equation [20]
Eq (3):

D=09A/{cosO 3)

Where A is the wavelength of the used Cu Ka radiation, 3 is
the full width at the half maximum of the 3-TCP line and 0 is
the diffraction angle.

In addition, the band at 1380 cm! is attributed to nitrate
NOs- and ammonium NH4* groups resulting from synthesis
residuals was only observed in as-prepared samples. The
presence of hydrogenophosphate and hydroxide ions confirms
that the apatite phase is apatitic tricalcium phosphate
Cas(HPO4)(PO4)s(OH). Fig.2a and 2b gives the IR spectra of
powders heat-treated at 800 and 1200°C respectively. They are
in good agreement with the phases determined from XRD pat-
terns of calcined powders. The 3-TCP and a -TCP peaks, in
both of the powders heat-treated at 800 and 1200°C, were in
good accordance with those reported in the literature [30, 31].
The peaks at 632 cm™ and 3572 cm™ represent the -OH group.
These peaks appear as weak shoulders in the FT-IR curve of
“as dried” sample which however, do not exist in the FT-IR
curves of B-TCP and a -TCP samples. This has proved the
elimination of hydroxyl ion (OH-) ions from the structure of
Ap-TCP. The band attributed to HPOs*> groups in the as-
synthesized powder (v = 875 cm™) had disappeared. This is
the most important change in the FTIR spectra of “as dried”
sample, as it confirms the transformation of the Ap-TCP to
TCP is completed after this heat treatment (800°C). The spectra
bands between 1456 and 1413 cm™ in the spectra of “as dried”
sample represent the carbonate groups that are not present in
the f and o -TCP sample

The values calculated of crystallites size, according to Scher- 40
rer's formula, are 10, 60 and 47 nm for TCPap, 3 -TCP and a — 35 4 ©
TCP respectively.
The fraction of crystalline phase (Xc) of the 3-TCP powders o 307
was evaluated by the following Eq. (4) [21]: eg',’ o5
Xe=1-v/I ) 5 ©)

Where I is the intensity of highest diffraction peak and v is SR
the intensity of the hollow between two considered diffraction E vo ]
peaks of TCP. ’ @)
The crystallinity degree of Ap-TCP is 10 %, while that of 3 — 104
TCP and a -TCP is 98 % and 92 % respectively.
Fig. 4a illustrates the FI-IR absorption spectra of the as- 0.5 1
prepared samples. The bands at 1092 and 1040 cm™ are as- 0o .,
signed to the components of the triply degenerate v3 anti- "4000 3500 3000 2000 1500 1000 500
symmetric P-O stretching mode. The 962 cm band is assigned Wavenumber (cm™)
to v1; the non-degenerate P-O symmetric stretching mode.
The bands at 601 and 571 cm are assigned to components of Fig. 4 FT-IR absorption spectra of the as-prepared samples:
the triply degenerate v4 O-P-O bending mode and the bands (a): dried at 60°C; (b): calcined at 800°C; (c): calcined at
in the range of 462-474 cm™ are assigned to the components of 1200°C (@ ~TCP)
the doubly degenerate v2 O-P-O bending mode. The broad
band between 3700 and 3000 cm!, as well as the one at 1640 5 CONCLUSION
cm!, corresponded to residual water adsorbed at the particle Based upon the experimental results, a quite fast, sim-
surface. A significant concentration of hydroxyl groups re- ple and efficient method has been set up for the prepara-
mains in the structure as observed from the intensity of the tion of high purity nano-sized p ~-TCP and a ~TCP pow-
stretching and librational bands at 3572 and 632 cm! [22-24]. ders with 47 and 60 nm respectively and high degree of
From literature, the band at 875 cm™ was ascribed to hy- crystallinity. B and a ~TCP are obtained from powders
drogenophosphate HPO4> groups; can be associated with Ca- synthesized at relatively elevated synthesis temperature
deficient apatite (CDAp) Caix(HPO4)x(PO4)sx(OH)2x and (37°C). From the FT-IR and the XRD analysis result, we
decomposition of CDAp after thermal treatment lead to for- confirmed that the tricalcium phosphate had a high phase
mation of {3-tricalcium phosphate (3-TCP) or biphasic calcium purity.
phosphates (BCP) [25-29]. The absorption bands at 1456, 1413
confirm the presence of carbonate group CO3 v3, COz2 has a
very affinity to apatite crystal during the synthesis process.
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