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  Wet chemical method for preparing high purity β 
and α- tricalcium phosphate crystalline powders  
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Abstract— The object in the present study is to provide a simple route for synthesizing highly pure nano-sized β-tricalcium phosphate (β –TCP) and α-
tricalcium phosphate (α –TCP) powders. Apatitic -tricalcium phosphate (ap-TCP) powders were synthesized through wet chemical precipitation method 
using a diammonium phosphate solution (NH4)2HPO4 and a calcium nitrate tetrahydrate solution Ca(NO3)2,4H2O as precursor materials, with a Ca/P 
molar ratio 1.50 from the initial reagents, calcining the powders at 800 and 1200°C to obtain single phase β –TCP and α –TCP respectively. The synthe-
sized powders were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR). The results showed that high purity and 
well-crystallized β –TCP and α –TCP powders could be obtained. 
 

Index Terms— β and α -Tricalcium phosphate, FTIR, wet chemical precipitation synthesis, X-ray diffraction. 

——————————      —————————— 

1 INTRODUCTION                                                                    
Apatitic tricalcium phosphate with the chemical formula 

of Ca9(HPO4)(PO4)5(OH) is a calcium orthophosphate that 
transforms into β–tricalcium phosphate Ca3(PO4)2 by heating 
above 750 ◦C. TCP is divided into three polymorphs (α, β and 
α') according to their thermal stability [1]: the low-temperature 
β -TCP, and the high-temperature forms, - and -TCP. The 
last one lacks practical interest because it only exists at tem-
peratures > 1430°C and reverts almost instantaneously to -
TCP on cooling below the transition temperature. In contrast, 
β -TCP is stable at room temperature and transforms recon-
structively [2,3] above 1125°C to -TCP, which can be retained 
during cooling to room temperature [1]. - and β -TCP are 
currently used in several clinical applications in dentistry, 
maxillo-facial surgery and orthopaedics: β -TCP is the compo-
nent of several commercial mono- or biphasic bioceramics and 
composites, and α -TCP is the major constituent of the powder 
component of various hydraulic bone cements [4,5]. In spite of 
having the same chemical composition,  and β-TCP differ 
considerably in their structure, density and solubility which, 
in turn, determine their biological properties and clinical ap-
plications. 

β -TCP is used mainly for preparing biodegradable bioc-
eramics shaped as dense and macro-porous granules and 
blocks, whereas the more soluble and reactive α -TCP is used 
mainly as a fine powder in the preparation of calcium phos-
phate cements, although some commercial bioceramic gran-
ules and blocks made of α -TCP may be found on the market. 
Both β and α -TCP materials are used in clinics for bone repair 
and remodelling applications. 

α-TCP crystallizes in the monoclinic crystal system and 
belongs to the space group P21/a, the β -TCP crystallizes in the 
rhombohedral space group R3c. Cell parameters (a, b, c, , β 
and ),  number of formula units per cell (Z) and cell volume 
(V) are displayed in Table 1 for α -TCP and its polymorphs β -
TCP and α’ -TCP [6,7]. The structural differences between β - 
and α -polymorphs of TCP are responsible for their different 
chemical and biological properties, among them, solubility 
and biodegradability. The high dissolution rate of β -TCP in 
the human biological environment advances bone growth dur-
ing the progressive degradation. This property imparts 
significant advantage to β -TCP compared to other biomedical 
materials which are not easily resorbed and replaced by natu-
ral bone [8,9]. Therefore, β -TCP is frequently used as bone 
repairing materials. α –TCP with high solubility has been ap-
plied as a component of bone cements and other bone substi-
tutes [10–12]. α-TCP with the liquid phase forms a very hard 
material that can be used for filling bone defects as well as 
joining another biomaterial with bone tissue. Moreover, ac-
cording to Eq. (1), α-TCP reacting with water leads to calcium 
deficient apatite, which imparts high biocompatibility to the 
cement [13]. 
3Ca3(PO4)2 + H2O  → Ca9(HPO4)(PO4)5(OH)  (1) 

The synthesis of pure TCP powders is not so much reported 
in the literature compared with that of hydroxyapatite (HA) 
Ca10(PO4)6(OH)2. The synthesis of α-TCP is accomplished by 
thermal transformation of a precursor with molar ratio Ca/P ̴ 
1.5 (calcium-deficient hydroxyapatite, CDHA; amorphous cal-
cium phosphate, ACP; or β -TCP) previously obtained [14, 15], 
or by solid-state reaction of a mixture of solid precursors at 
high temperatures [16, 17]. Self-propagating high-temperature 
synthesis [18] and combustion synthesis [19] have also been 
employed. 

TCP powders are synthesized via wet-chemical method 
slightly modified. This method is most commonly used to 
form the Ap-TCP. The molar ratio of Ca/P in ApTCP is the 
same as that in TCP, and the ApTCP is usually calcined above 
700–800°C to transform into β -TCP, as described by the fol-
lowing equation (2): 
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Ca9(HPO4)(PO4)5(OH) → 3Ca3(PO4)2 + H2O  (2) 
Then β-TCP is reconstructively transforms at 1125°C into α-

TCP.  
 

 

 

 

 

 

 

2 EXPERIMENTAL PROCEDURE  
Reaction conditions for the preparation of TCP using wet-

chemical method slightly modified was initially optimized. 
Analytical grade calcium nitrate tetrahydrate 
[Ca(NO3)2·4H2O] and diammonium hydrogen phosphate 
[(NH4)2HPO4] were dissolved individually in distilled water 
preheated to 37°C. The Ca(NO3)2·4H2O solution was added 
dropwise into (NH4)2HPO4 solution under constant stirring to 
reach the Ca/P molar ratio of 1.50. The temperature of the 
opaque solution is maintained at 37°C. The pH was adjusted 
at once by the addition of concentrated ammonium hydroxide 
(NH4OH) solution to around 8.5. The milky solution is stirred 
for 2h at 37°C. Formed precipitates are then filtered out of the 
mother liquor, washed repeatedly with distilled water to re-
move NO3- and NH4+, followed by drying in an air atmos-
phere at 60°C for 24h. The cake obtained after drying was 
powdered with agate mortar and pestle, and then calcined 
into alumina crucible at 800°C for 2 h. The product was deter-
mined to be pure β -TCP. Next, the as prepared β –TCP were 
calcined at 1200°C followed by quenching to room tempera-
ture (RT). The calcination is performed as follows: β –TCP 
powders are heated from RT to 1200°C in 4 hours, soaked at 
1200°C for 3 hours, followed by quenching, in the furnace, 
from 1200°C to RT in 4 hours. 

3  MATERIALS CHARACTERIZATION 
Crystalline phases were identified by means of a XPERT-

PROPW 3050/60 (Theta/Theta) X-ray diffractometer (XRD) 
using CuKα radiation and operating at 30 kV and 35 mA. XRD 
patterns were collected over the 2θ range of 5-80° at a step size 
of 0.06°. Crystalline phases detected in the patterns were iden-
tified by comparison to the standard patterns from the ICDD-
PDF (International Center for Diffraction Data-Powder Dif-
fraction Files).  

The functional groups present in the prepared powder 

were recorded on FTIR spectrophotometer, VERTEX 70, Gene-
sis Series (400–4000 cm-1, resolution 4, scans 20). For this 1% of 
the powder was mixed and ground with 99% KBr and the 
spectrum was taken in the range of 400 to 4000 cm-1. 

4 RESULTS AND DISCUSSION 
XRD patterns of as-prepared sample dried 24 h at 60°C is 

shown if Figure 1. It reveals that the powder exhibited a single 
apatitic phase can be indexed as CDHA phase according to 
JCPDS N°. 9-432, without a second phase as dicalcium phos-
phate anhydrous CaHPO4 (DCPA, PDF 9–80). When the as-
dried sample is calcined at 800°C (Fig. 2), all the diffraction 
peak positions match well with the standard XRD pattern of β 
-TCP (JCPDS  NO.9-169). The diffraction peaks are high and 
narrow, implying that the β -TCP crystallizes well. In addition, 
no peaks of impurities are observed in the X-ray diffraction 
diagram of the obtained β -TCP. When the β -TCP is calcined 
at 1200°C (Fig. 3), all the diffraction peak positions match well 
with the standard XRD pattern of α-TCP (JCPDS NO.9-348); 
There are no reflections characteristic for the crystalline phases 
of other calcium phosphates, such as βTCP or hydroxyapatite 
Ca10(PO4)6(OH)2. 
 

 
 
 
 

 
 
 
 

Fig. 1: XRD patterns of as-prepared sample dried 24 h 
at 60°C 

Fig. 2: XRD patterns of as-prepared sample calcined at 
800°C (β –TCP) 

TABLE 1 
 STRUCTURAL DATA OF  Α -TCP AND ITS POLYMORPHS. 

Property Ca3(PO4)2(TCP)  polymorph 
 β-TCP α- TCP α’-TCP 

Symmetry Rhombohedral Monoclinic Hexagonal 
Space 
group 

R3c P21/a P63/mmc 

a(nm) 1.04352(2) 1.2859(2) 0.53507(8) 
b(nm) 1.04352(2) 2.7354(2) 0.53507(8) 
c(nm) 3.74029(5) 1.5222(3) 0.7684(1) 
α(°) 90 90 90 
β(°) 90 126.35(1) 90 
γ(°) 120 90 120 
Z 
V(nm3) 

21 
3.5272(2) 

24 
4.31(6) 

1 
0.19052(8) 
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The mean crystallite size (D) was calculated from the XRD 
line broadening measurement from the Scherrer equation [20] 
Eq (3): 

D = 0.9 λ / β cosθ     (3) 
Where λ is the wavelength of the used Cu Kα radiation, β is 

the full width at the half maximum of the β-TCP line and θ is 
the diffraction angle. 
The values calculated of crystallites size, according to Scher-
rer`s formula, are 10, 60 and 47 nm for TCPap, β –TCP and α –
TCP respectively. 
The fraction of crystalline phase (Xc) of the β-TCP powders 
was evaluated by the following Eq. (4) [21]: 

Xc = 1 – ν/I     (4) 
Where I is the intensity of highest diffraction peak and ν is 

the intensity of the hollow between two considered diffraction 
peaks of TCP. 
The crystallinity degree of Ap-TCP is 10 %, while that of β –
TCP and α –TCP is 98 % and 92 % respectively. 
Fig. 4a  illustrates the FT-IR absorption spectra of the as-
prepared samples. The bands at 1092 and 1040 cm-1 are as-
signed to the components of the triply degenerate ν3 anti-
symmetric P–O stretching mode. The 962 cm-1 band is assigned 
to ν1; the non-degenerate P–O symmetric stretching mode. 
The bands at 601 and 571 cm-1 are assigned to components of 
the triply degenerate ν4 O–P–O bending mode and the bands 
in the range of 462–474 cm-1 are assigned to the components of 
the doubly degenerate ν2 O–P–O bending mode. The broad 
band between 3700 and 3000 cm-1, as well as the one at 1640 
cm-1, corresponded to residual water adsorbed at the particle 
surface. A significant concentration of hydroxyl groups re-
mains in the structure as observed from the intensity of the 
stretching and librational bands at 3572 and 632 cm-1 [22–24]. 
From literature, the band at 875 cm−1 was ascribed to hy-
drogenophosphate HPO42- groups; can be associated with Ca-
deficient apatite (CDAp) Ca10-x(HPO4)x(PO4)6-x(OH)2-x and 
decomposition of CDAp after thermal treatment lead to for-
mation of β-tricalcium phosphate (β-TCP) or biphasic calcium 
phosphates (BCP) [25-29]. The absorption bands at 1456, 1413 
confirm the presence of carbonate group CO3 ν3, CO2 has a 
very affinity to apatite crystal during the synthesis process. 

In addition, the band at 1380 cm-1 is attributed to nitrate 
NO3- and ammonium NH4+ groups resulting from synthesis 
residuals was only observed in as-prepared samples. The 
presence of hydrogenophosphate and hydroxide ions confirms 
that the apatite phase is apatitic tricalcium phosphate 
Ca9(HPO4)(PO4)5(OH). Fig.2a and 2b gives the IR spectra of 
powders heat-treated at 800 and 1200°C respectively. They are 
in good agreement with the phases determined from XRD pat-
terns of calcined powders. The β-TCP and α -TCP peaks, in 
both of the powders heat-treated at 800 and 1200°C, were in 
good accordance with those reported in the literature [30, 31]. 
The peaks at 632 cm−1 and 3572 cm−1 represent the –OH group. 
These peaks appear as weak shoulders in the FT-IR curve of 
“as dried” sample which however, do not exist in the FT-IR 
curves of β-TCP and α -TCP samples. This has proved the 
elimination of hydroxyl ion (OH−) ions from the structure of 
Ap-TCP. The band attributed to HPO42- groups in the as-
synthesized powder (v = 875 cm−1) had disappeared. This is 
the most important change in the FTIR spectra of “as dried” 
sample, as it confirms the transformation of the Ap-TCP to 
TCP is completed after this heat treatment (800°C). The spectra 
bands between 1456 and 1413 cm−1 in the spectra of “as dried” 
sample represent the carbonate groups that are not present in 
the β and α -TCP sample 

 

 
 

 

5 CONCLUSION 
Based upon the experimental results, a quite fast, sim-

ple and efficient method has been set up for the prepara-
tion of high purity nano-sized β –TCP and α –TCP pow-
ders with 47 and 60 nm respectively and high degree of 
crystallinity. β and α –TCP are obtained from powders 
synthesized at relatively elevated synthesis temperature 
(37°C). From the FT-IR and the XRD analysis result, we 
confirmed that the tricalcium phosphate had a high phase 
purity. 

Fig. 3: XRD patterns of as-prepared sample calcined at 
1200°C (α –TCP) 

Fig. 4: FT-IR absorption spectra of the as-prepared samples: 
(a): dried at 60°C; (b): calcined at 800°C; (c): calcined at 

1200°C (α –TCP) 
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